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Abstract

A linearized analysis of the stability of the ~ow in elasticÐplastic ~uid!saturated porous media with
incompressible constituents is performed[ A relationship is established between the results of this analysis
and the results of analyses based on acceleration waves performed by Loret and Harireche ðJournal of the
Mechanics and Physics of Solids 28\ 458Ð595 "0880#Ł and by Loret et al[ ðInternational Journal of Solids and
Structures 23\ 0472Ð0597 "0886#Ł^ a justi_cation is found for the growth of the acceleration waves in the
non!associative case when their speeds are real and a clari_cation is provided relative to the growth or decay
of waves in the interior of ~utter regions[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

An analysis of the nature of the wave!speeds and of the propagation modes of acceleration
waves in elasticÐplastic ~uid!saturated porous media was performed in Loret and Harireche "0880#]
the conditions for the existence of stationary acceleration waves were derived and it was shown
that a non!associative ~ow rule may lead to the existence of complex squares of wave!speeds\ a
phenomenon known as ~utter[ In Loret et al[ "0886#\ the growth or decay of acceleration waves
was studied[ Under simplifying assumptions concerning the material state on the wave!front\ it
was found that when the squares of the wave!speeds are real\ non!associative ~ow rules may give
rise to the `rowth in time of the amplitudes of the acceleration waves and also that this growth can
become unbounded at the onset of the ~utter phenomenon "i[e[\ when two plastic wave!speeds
coalesce#\ suggesting the formation of a shock[ It was also found that the coe.cient that was used
to characterize the growth or decay of the acceleration waves when their speeds were real would
have\ inside the ~utter region "i[e[\ when the wave!speeds become complex#\ the sign that char!
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acterized the decay of the acceleration waves[ This fact was apparently contradictory with the
usual interpre! tation of ~utter "Rice\ 0865# as the `rowth in time of the amplitude of propagation
of harmonic waves[

In the present paper a linearized analysis of the stability of the ~ow of elasticÐplastic ~uid!
saturated porous media with incompressible constituents is performed by studying the growth of
a small plane harmonic perturbation[ The objectives of the present paper are]

"i# to establish\ for elasticÐplastic ~uid!saturated porous media\ a relationship between the results
of the analysis based on acceleration waves and those of the analysis based on harmonic
waves^ this relationship involves not only the velocities of propagation of these two kinds of
waves but also their rates of growth in time^

"ii# to understand the reasons for the growth of acceleration waves in the non!associative case
when their speeds are real^ this results from the presence of viscous terms due to Darcy|s law
in the porous medium\ a striking e}ect being the destabilizing role that viscous terms may
play in non!associative problems^

"iii# to clarify the apparent contradiction between the results of Loret et al[ "0886# and the
interpretation of Rice "0865# in what concerns growth or decay of waves in the interior of the
~utter region^ the present analysis clari_es in what circumstances the coe.cient used in Loret
et al[ "0886# to characterize the rate of growth of acceleration waves does indeed have that
physical meaning[

Notice that the exclusive consideration of the plastic loading regime in the present linearized
stability analysis precludes an assessment of the full consequences of the detected ~utter instabilities\
since the growing oscillatory nature of the ~utter solutions leads to situations of local plastic
unloading which are quite apart from the linearized loading regime[ On the other hand it makes
sense to compare the results of the present harmonic wave analysis with those obtained in the
acceleration wave analyses of Loret and Harireche "0880# and Loret et al[ "0886# because only the
linearized constitutive equations for the plastic loading regime were also used in those works[

Harmonic waves in poroelastic materials have been considered by several authors "e[g[\ Biot\
0845a\ b^ Atkin\ 0857^ Bowen and Reinicke\ 0867^ Bowen and Lockett\ 0872^ Beskos\ 0878#[ A
study on material instability for drained and undrained behavior of an elasticÐplastic porous
medium has been performed by Molenkamp "0880a\ b#[ The stability of the ~ow of ~uid!saturated
inelastic porous media has been investigated for idealized initial!boundary value problems in both
quasi!static "Rice\ 0864# and dynamic contexts "Vardoulakis\ 0875#[

The paper is organized as follows[ In Section 1\ the constitutive equations for an elasticÐplastic
mixture when both the ~uid and the solid constituents are incompressible "Loret and Harireche\
0880# and the equations of linear momentum balance for a saturated two!phase porous material
are brie~y recalled[ In Section 2\ the characteristic equation yielding the harmonic wave!speeds is
obtained[ In Section 3\ quasi!explicit expressions for the plastic modulus indicating the onset of
divergence and the onset of ~utter are obtained and a relationship between the results of the
analyses based on acceleration waves and on harmonic waves is established[ Some numerical
results presented in Simo½es "0886# suggest that the major qualitative features of the results when
both the ~uid and the solid constituents are compressible are similar to those of the incompressible
case studied in the present paper[ Finally\ in Section 4\ the main conclusions of this study are
summarized and discussed[
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1[ Governing equations

1[0[ Constitutive equations for the elasticÐplastic mixture with incompressible constituents

The rate constitutive equations developed in the framework of the theories of mixtures by Loret
and Harireche "0880# relate the rates of the partial stress tensors t¾a to the velocity gradients 1va:1x^
here and throughout the paper\ the Greek indices a and b apply to the solid "a\ b � s# and ~uid
"a\ b � w# phases or constituents[ Each phase of the mixture has a mass Ma and a volume Va[ Let
M � Sa Ma and V � Sa Va be\ respectively\ the total mass and total volume of the mixture[ Both
solid and ~uid phases are inviscid[ The ~uid is a perfect ~uid whose partial pressure is denoted by
pw^ thus\ tw � −pwd\ with d denoting the second!order unit tensor in a 2!D space[ The continuum
is linear isotropic with respect to its elastic properties but its plastic properties may embody any
kind of anisotropy[

If both constituents are incompressible and in absence of chemical reactions\ the conservation
of mass of both constituents constrains the volumetric strain rates "Bowen\ 0865#]

ns div vs¦nw div vw � 9[ "1[0#

The volume fractions na � Va:V $ Ł9\ 0ð\ a � s\ w\ obey the constraint

ns¦nw � 0[ "1[1#

The elastic material response is characterized by two constants l�s and ms which can be related to
measurable quantities like the Biot and the Skempton parameters "Bowen\ 0871^ Loret and
Harireche\ 0880#[ The restrictions on the ranges of these parameters "Bowen\ 0865#\

ms × 9\ l�s¦
1
2
ms × 9\ "1[2#

are known to imply the existence of real and strictly positive elastic acceleration wave!speeds
"Loret and Harireche\ 0880#]

ce
s �X

ms

rs

\ ce
L� �X

0
r

l�s¦1ms

rs

^ "1[3#

ce
s is the speed of propagation of the elastic shear acceleration wave "of multiplicity 1#\ ce

L� is the
speed of propagation of the elastic longitudinal acceleration wave\ the scalar r is given by

r � 0¦0
ns

nw1
1 rw

rs
× 0\ "1[4#

and ra � Ma:V\ a � s\ w\ are the apparent mass densities[
The rate constitutive equations for the elasticÐplastic mixture with incompressible constituents

are best expressed in terms of the rate of Terzaghi|s e}ective stress t?s de_ned by

t?s � ts−
ns

nw
tw[ "1[5#

The rate constitutive equations read
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t¾?s � A�ss]
1vs

1x
\ "1[6#

where the fourth order tensor A�ss\ which is endowed with minor symmetries in its two _rst and
two last indices\ is a rank!one modi_cation with respect to the elastic constitutive contribution]

A�ss � E�s−
l�
H

"E�s] P# &"Q] E�s#[ "1[7#

The isotropic elastic tensor E�s is given by

E�s � l�sd & d¦1msI "1[8#

where I is the fourth!order symmetric unit tensor with components Iijkl �
0
1
"dikdjl¦dildjk#[ In the

above formulas\ & denotes a dyadic product\ a dot {{=|| "or a double dot {{]||# denotes a contraction
product\ so that\ in Cartesian components\ adjacent indices are summed "or pairwise summed#[
The corotational terms are neglected in the stress rates so that a superimposed dot denotes the
material time derivative which\ in the following linearized analysis\ is approximated by the partial
derivative with respect to time 1:1t[ P and Q are the unit outward normals to the plastic potential
and yield surface\ respectively\ both assumed to be smooth[ The loading:unloading index l� is
equal to one for plastic loading\ that is\ when the stress point is on the yield surface and the plastic
index L� is strictly positive\

L� �
0
H 0Q] E�s]

1vs

1x1× 9\ "1[09#

and it is equal to 9 otherwise[ In this linearized analysis we shall assume that plastic loadin` ðl� � 0
in eqn "1[7#Ł holds pointwise[ The modulus H is assumed to be strictly positive in order to exclude
locking behavior]

H � h¦he × 9\ he � Q] E�s] P[ "1[00#

The analysis is restricted to solid skeletons whose plastic dilatant behavior obeys a ~ow rule that
preserves deviatoric associativity\ namely

P � cos xS
¦
sin x
z2

d\ Q � cos cS
¦
sin c

z2
d\ "1[01#

where x is the dilatancy angle\ c is the friction angle "restricted by the conditions 9 ¾ x ¾ c ³ p:1#
and S
 is a unit deviatoric tensor in which any kind of induced anisotropy can be embodied[ When
S
 is proportional to the deviatoric part of Terzaghi|s e}ective stress t?s "1[5# the underlying yield
surface is of the DruckerÐPrager type[ The assumption of deviatoric associativity is well supported
by experiments performed on many geomaterials "e[g[ Baker and Desai\ 0871#[ Notice that\ if the
solid skeleton obeys an associative ~ow rule\ that is P � Q\ the constitutive equations of the porous
medium with incompressible constituents display the major symmetry property[



F[M[F[ Simo½es et al[ : International Journal of Solids and Structures 25 "0888# 0166Ð0184 0170

1[1[ Balance of linear momentum and momentum supplies

For each phase a � s\ w of the porous medium\ the balance of momentum

div ta¦p¼a¦ra"ba−aa# � 9 "no sum over a# "1[02#

involves\ in addition to the usual terms present in single phase solids "divergence of the stress
tensor\ body force per unit mass ba and acceleration aa#\ the apparent mass density ra and the
momentum supply p¼a to the phase a by the rest of the mixture[ Momentum supplies are subject to
the constraint

p¼ s¦p¼w � 9[ "1[03#

As in Loret et al[ "0886#\ we assume in this linearized analysis that the momentum supplies
include only the so!called Stokes drag e}ects and\ in addition\ we adopt simply an isotropic Darcy|s
law that introduces a single constant material parameter j × 9\ proportional to the inverse of the
permeability "Bowen\ 0865#]

p¼ s � −p¼w � −j"vs−vw#[ "1[04#

2[ The characteristic equation for the harmonic wave!speeds in presence of incompressible

constituents

Assuming the body forces ba\ a � s\ w\ to be constant in time\ we seek solutions to the constitutive
eqns "1[6#\ "1[7# and to the rate form of the equations of linear momentum balance for each phase

div t¾s¦p¼
=
s � rsv�s\

div t¾w¦p¼
=
w � rwv�w\ "2[0#

in the form of plane harmonic waves of assigned wavelength]

va"x\ t# � v¼a exp ðik"n = x−ct#Ł\ a � s\ w\ "2[1#

where v¼a\ a � s\ w\ are undetermined amplitude constants\ n is the unit direction of propagation\
k is a real number which represents the angular frequency of the space oscillations "k � 1p:L\
where L is the wavelength# and c is the "possibly complex# speed of propagation[ We also assume
that the indeterminate rate of the intrinsic pressure in the ~uid p¾w"t¾w � −p¾wd# is a periodic quantity]

p¾w � p¾wè exp ðik"n = x−ct#Ł[ "2[2#

Subtracting eqn "2[0#1 multiplied by ns:nw from eqn "2[0#0 we get

div t¾?s¦p¼
=
s−

ns

nw
p¼
=
w � rsv�s−

ns

nw
rwv�w "2[3#

which involves the time rate of Terzaghi|s e}ective stress "1[5#[ Upon substitution of eqns "2[1#\
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"2[2# and of the constitutive eqns "1[6#Ð"1[7# in "2[0#1\ "2[3# and in the incompressibility condition
"1[0#\ the squares of the wave!speeds are found to be solutions of the problem

K
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H
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knwrs
¦c11 d ic
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k"rsrw#0:1
d
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k"rs#0:1
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k"rsrw#0:1
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=
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� 9\ "2[4#

where

A�ss �
l�s¦1ms

rs

n & n¦
ms

rs
"d−n & n#−

0
H

a� & b�

rs
\ "2[5#

a� � "E�s] P# = n � l�s"tr P#n¦1msP = n\

b� � n ="Q] E�s# � l�s"tr Q#n¦1msn = Q "2[6#

and

vè
a �"ra#0:1v¼a for a � s\ w"no sum over a#[ "2[7#

In order to expand the resulting characteristic equation\ it is convenient to de_ne a Cartesian
coordinate system "e0\ e1\ e2# in such a way that e0 � n and e2 = b � 9[ Upon expansion\ the charac!
teristic equation is cast in the following polynomial form with respect to the normalized wave!
speed W]

W1 ð"iW#2−a"iW#1¦"iW#−af Ł1F�"iW# � 9\

F�"iW# � u�9"iW#4¦u�0"iW#3¦u�1"iW#2¦u�2"iW#1¦u�3"iW#¦u�4\ "2[8#

where

W �
c

ce
s?

\ "2[09#

a is a non!dimensional wavelength

a �
0

kLC

�
0
1p

L
LC

\ "2[00#

LC is a characteristic length!scale introduced by Darcy|s law

0
LC

�
j

ce
s 0

0

rs
¦

0

rw1\ "2[01#

and
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f �
rs

rs¦rw
\ "2[02#

and the real coe.cients u�i \ i � 9\ 4\ are given in the Appendix[ In deriving these coe.cients it has
been found instrumental to introduce the quantities x and y which depend on the propagation
direction

x � x"n# �
"a� = n#"b� = n#

1msr
s

\ y � y"n# �
a� = b�−"a� = n#"b� = n#

1msr
s

\ "2[03#

and the scalar g de_ned as

g � 0
ce

L�

ce
s 1

1

[ "2[04#

For deviatoric associativity as de_ned by "1[01# and using the de_nitions "2[6#\ the coe.cients
x"n# and y"n# read]

x"n# � −1"ce
s#1 cos x cos c"Nx¦n = S
 = n#"Nc¦n = S
 = n#\

y"n# � 1"ce
s#1 cos x cos cn = S
 = ðd−n & nŁ = n = S
\ "2[05#

where\ due to the constitutive inequalities following "1[01#\

Nc � z2 tan c
l�s¦1ms:2

1ms

− Nx � z2 tan x
l�s¦1ms:2

1ms

− 9[ "2[06#

The coe.cient y"n# is always positive "or zero when n is an eigenvector of S
# and the coe.cient
x"n# is negative in the case of an associative ~ow rule "c � x#[ It is also possible to perform a
spectral decomposition of the unit deviatoric tensor S
]

S
� s
2

i�0

S
iEi & Ei\ "2[07#

where the eigenvalues S
i are expressed in terms of a generalized Lode angle L\ 9 ¾ L ¾ p:2\

S
i � z
1
2
cos ðL−1

2
"i−0# pŁ\ i � 0\ 1\ 2\ "2[08#

and the eigenvectors Ei are uniquely de_ned in the case of distinct eigenvalues S
i[
Notice that eqn "2[8# has always the root W � 9 which corresponds to a trivial solution

"vs � vw � 9\ p¾w � 9#[ Also\ one can show that in the limit as a : 9 "the wavelength L or the inverse
of the permeability j tend to zero# we recover the characteristic equation for the speeds of
propagation of the acceleration waves for incompressible constituents ðcf eqns "5[09#Ð"5[01# in
Loret and Harireche\ 0880Ł[

The characteristic equation for the elastic porous medium with incompressible constituents is
recovered if H is set equal to ¦� in "2[8#] then the polynomial equation for W is still given by
"2[8# but now with
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F�"iW# �"iW#1−
a"0−f #

r"nw#1
"iW#¦g\ "2[19#

which has complex roots W with strictly negative imaginary parts[

3[ Dynamic instabilities in presence of incompressible constituents

For the solutions "2[1# and "2[2# of assigned wavelength that satisfy the _eld equations we shall
delineate _ve situations depending on the nature of the wave!speed c or equivalently of the
normalized wave!speed W "see Fig[ 0#]

, if W is real we have a solution periodic in time "a plane wave#^
, if W is a complex number with negative imaginary part the plane wave decays in time^
, if W is zero we have a stationary wave^
, if W is a purely imaginary positive number the solution explodes as time elapses without

oscillating\ a diver`ence!type `rowth^
, if W is a complex number with positive imaginary part the solution grows while oscillating\ a

~utter!type `rowth[

In our analysis\ it is assumed that during a deformation process the modulus H "or equivalently
the plastic modulus h# decreases continuously starting from the value H � ¦� "when the material
has elastic behavior and the dynamic instabilities are ruled out#[ As the parameter H−0 is increased\
we shall look for situations in which divergence or ~utter!type growth occurs along at least one
direction[

3[0[ Stationary waves and diver`ence

Stationary waves are de_ned as plane waves that do not propagate through the material[ Thus\
W � 9 must be a root of the characteristic eqn "2[8#[ Setting W equal to zero in "2[8# we obtain
the condition for the onset of a stationary wave\

Fig[ 0[ Sketch of the _ve possibilities for the nature of the normalized wave!speed W[
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0
Hsta

1ms 1� max
"n$N#

ry−x:g

r"ce
s#1

\ "3[0#

where the maximization is to be performed over the set N such that H is strictly positive[ Condition
"3[0# coincides with the condition for the onset of a stationary discontinuity "Loret and Harireche\
0880#[ As expected\ the viscous e}ects due to Darcy|s law play no role on the determination of the
onset of stationary waves[

Since the solutions W of "2[8# are in general complex\ transitions to divergence
"Im"W# × 9\ Re"W# � 9# can occur either when Re"W# � 9 and Im"W# � 9 "a stationary wave#
or when Im"W# × 9 and Re"W# : 9[ However in the last case divergence occurs necessarily after
the occurrence of ~utter "Im"W# × 9\ Re"W# � 9#[ We therefore do not investigate the occurrence
of these situations in more detail[

3[1[ Flutter

First of all notice that for elastic mixtures "H � ¦�# or for elasticÐplastic mixtures with
associative plasticity "P � Q# the matrix in "2[4# is symmetric[ Therefore the speeds W are real or
complex with negative imaginary parts so that ~utter is excluded[

For non!associative plasticity "P � Q# one of the roots of "2[8# may become complex with
positive imaginary part leading to an harmonic solution with ~utter!type growth[ Notice that the
_rst and second factors of "2[8# are also present in the characteristic equation for the elastic case^
thus only the plastic wave!speeds that are roots of F� � 9 may become complex leading to ~utter[

Looking for transitions to ~utter\ at which one root of F�"iW# � 9 corresponds to a real wave!
speed W\ we obtain

0
Hflu

1ms 1� max
"n$M#

r"ce
s#1

−W1"ry−x#¦0a1f
0−f

r"nw#1
ry¦gry−x1

W3−W1 0a1 0−f

r"nw#1
¦0¦g1¦0a1f

0−f

r"nw#1
¦g1

"3[1#

where W1 satis_es

0ry−
0

r"nw#1
x1W5¦6$a1 0

0−f

r"nw#11
1

−1g% ry−
a1−1

r"nw#1
x7W3

¦0g1ry−
0−1fa1

r"nw#1
x1W1−

a1f 1

r"nw#1
x � 9 "3[2#

and the maximization is to be performed over the set M such that H is strictly positive[ In the
following sections we study eqns "3[1# and "3[2# in the long wavelength limit and in the short
wavelength limit[
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3[1[0[ Lon` wavelen`th approximation
For long wavelengths "a Ł 0# the transition boundary "3[1# simpli_es to

0
Hflu

1ms 1¼

ry¦o
zr"nw#1zxry

0−f

r"ce
s#1

\ "3[3#

where o � 20[ Along this boundary we have

W1 ¼ f
zx

zx¦o"0−f #
zry

zr"nw#1

[ "3[4#

Notice that this transition boundary exists only when x − 9 which may happen only if the ~ow
rule is non!associative[ When this is the case\ we can prove that

Hflu
o�0 − 6

9 − Hflu
o� −0\ for"0−f #zry ³ zr"nw#1zx^

Hflu
o� −0 − 9\ otherwise[

"3[5#

Consequently\ there exists always at least one transition boundary given by "3[3# with o � ¦0 and
it precedes the onset of stationary waves given by "3[0#[

3[1[1[ Short wavelen`th approximation
For short wavelengths "a ³³# the transition boundary "3[1# simpli_es to

0
Hflu

1ms 1¼ −
0
t 0zx¦o

zry

zr"nw#11"zx¦ozr"nw#1zry#\ "3[6#

where o � 20 and

t � rð"ce
L�#1−"ce

s#1Ł[ "3[7#

Along this boundary we have

W1 ¼
zx¦ogzr"nw#1zry

zx¦ozr"nw#1zry
[ "3[8#

Again\ this transition boundary exists only when x − 9 which may happen only if the ~ow rule is
non!associative[

When t ³ 9 we can prove that
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Fig[ 1[ Porous {{material 0|| with incompressible constituents and non!associative plasticity[ Regions of
divergence and ~utter growth in the parameter plane "1ms:H\ a# and limit as a : 9 of the coe.cient
Im"W"a##:a which controls the growing time behavior of the harmonic waves[ S ] Smallest plastic wave!
speed[ L ] Largest plastic wave!speed[ ST ] Stationary wave "Re"W# � Im"W# � 9#[ OF ] Onset of ~utter
"Re"W# � 9\ Im"W# � 9#[ FD ] Flutter!divergence transition "Re"W# � 9\ Im"W# × 9#[ x � 9> ^ c � 29> ^
L � 19>[ "a# l�s:ms � 04 "c t ³ 9#\ u � 39> ^ "b# l�s:ms � 04\ u � 49> ^ "c# l�s:ms � 14 "c t × 9#\ u � 39> ^ "d#
l�s:ms � 14\ u � 49>[
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Fig[ 1[ "Continued#[

Hflu
o�0 − 89 − Hflu

o� −0\ for zr"nw#1 ³
zry

zx
³

0

zr"nw#1
^

Hflu
o� −0 − 9\ otherwise[

"3[09#

Consequently\ there exists always at least one transition boundary given by "3[6# with o � ¦0 and
it coincides with the boundary that de_nes the transition from decay to growth in time of the
amplitude of the largest acceleration wave in the non!associative elasticÐplastic ~uid!saturated
mixture with incompressible constituents ðcf eqn "60# and Fig[ 0 in Loret et al[\ 0886Ł[ When the
transition boundary given by "3[6# with o � −0 exists it coincides with the boundary that de_nes
the transition from growth to decay in time of the amplitude of the smallest acceleration wave ðcf
eqn "60# and Fig[ 1 in Loret et al[\ 0886Ł[ When t × 9 we can prove that

for zr"nw#1 ³
zry

zx
³

0

zr"nw#1
\ H~u

o�−0 − 9

otherwise\ 9 − H~u
o� −0

9− H~u
o�0[ "3[00#

Consequently\ it may exist one transition boundary given by "3[6# with o � −0 and\ if it exists\ it
coincides with the boundary that de_nes the transition from decay to growth in time of the
amplitude of the smallest acceleration wave in the non!associative elasticÐplastic ~uid!saturated
mixture with incompressible constituents ðcf eqn "60# in Loret et al[\ 0886Ł[

3[2[ The short wavelen`th behavior of the harmonic modes

As seen above\ the characteristic equation of the harmonic waves "2[8# reduces to the charac!
teristic equation of the acceleration waves ðcf eqns "5[09#Ð"5[01# in Loret and Harireche\ 0880Ł as
a : 9 and then\ for given values of ms\ l�s\ rs\ rw\ nw\ x\ y and H:"1 ms# × 9\ the solutions W"a# of
"2[8#Ð"2[00# approach the solutions WA of the characteristic equation of the acceleration waves[



F[M[F[ Simo½es et al[ : International Journal of Solids and Structures 25 "0888# 0166Ð0184 0178

When the solutions WA are real\ the limit as a : 9 of Im"W"a## is equal to Im"WA# � 9 and the
limit as a : 9 of the coe.cient that controls the growing time behavior of the harmonic waves\
k Im"c# � "ce

s:LC# Im"W#:a\ can be calculated by using l|Ho¼pital|s rule and the continuity of
d"Im W"a##:da at a � 9]

lim
a:9

Im W"a#
a

� $
d Im W"a#

da %"a�9#

[ "3[01#

Let us _rst consider the elastic wave!speeds which are the roots of the second factor of "2[8#[ By
di}erentiation we get

0
dW
da 1"a�9#

� i
W1

A−f

−2W1
A¦0

"3[02#

where WA is the normalized speed of the elastic shear acceleration wave WA � 0\ and then we
obtain the result

$
d Im"W#

da %"a�9#

� −
0−f
1

³ 9[ "3[03#

Let us now consider the plastic wave!speeds[ By di}erentiation of F� we get

$
d Im"W#

da %"a�9#

� −
0−f
1

×
$r 00¦

g

r"nw#11−
ry−x:"r"nw#1#

"H:1ms#"ce
s#1 %W1

A−$gr−
gry−x

"H:1ms#"ce
s#1% 00¦

0

r"nw#11
$r"0¦g#−

ry−x

"H:1ms#"ce
s#1%W1

A−1 $gr−
gry−x

"H:1ms#"ce
s#1%

"3[04#

where WA is the real speed of the acceleration wave[ In both cases "3[03# and "3[04# the limit as
a : 9 of the coe.cient that controls the growth or decay in time of the harmonic waves is found
to be equal to the coe.cient that controls the growth or decay of the acceleration waves obtained
in Loret et al[ "0886#]

lim
a:9

k Im"c# �
ce

s

LC

lim
a:9

Im"W#
a

�
ce

s

LC $
d Im"W#

da %"a�9#

� −
ce

s

LC

0−f
1

X � −
j

1rs
X "3[05#

where X is de_ned by "cf eqn "33# in Loret et al[\ 0886#

X �
eL = E = eR

eL = M = eR
"3[06#

where eL and eR are the left and right eigenvectors for the acceleration wave eigenproblem ðcf eqn
"29# in Loret et al[\ 0886Ł and the matrices E and M ðde_ned by eqn "43# and "20# in Loret et al[\
0886Ł characterize viscous and inertia e}ects\ respectively[ The equality in eqn "3[05# means that\
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in the regions of the parameter space where the amplitude of the acceleration waves with real
speeds of propagation are found to grow or decay\ the corresponding harmonic waves are also
found to grow or decay at the same rate when their wavelengths are decreased to zero[ The
transitions from decay to growth in time observed in Loret et al[ "0886# for the acceleration waves
coincide with the limit as a : 9 of the ~utter boundary for the harmonic waves given by "3[6#Ð
"3[8#[

When the solutions WA of the characteristic equation of the acceleration waves are not real\ the
limit as a : 9 of Im"W"a## is equal to Im"WA# × 9\ so that

lim
a:9

k Im"c# �
ce

s

LC

lim
a:9

Im"W#
a

� ¦�[ "3[07#

The exponentially growing time behavior of the harmonic solutions is unboundedly magni! _ed
for vanishing small values of the arbitrary wavelengths] the problem becomes "linearly# ill!posed
in the sense of the de_nitions proposed by Schae}er "0889#\ Benallal "0881# and Benallal et al[
"0882#[ In those cases\ the coe.cient X\ eqn "3[06# "which was used to characterize the growth or
decay of the acceleration waves when their speeds were real# does not have such unbounded
behavior[ However we can show that\ in those cases\ we still have

ce
s

LC $
d Im"W#

da %"a�9#

� −
ce

s

LC

0−f
1

Re"X# � −
j

1rs
Re"X#[ "3[08#

In the case of elastic porous media with incompressible constituents eqn "3[08# simpli_es to

$
d Im"W#

da %"a�9#

�

F

G

j

J

G

f

−
0−f
1

³ 9 for W � 0\

−
0
1

0−f

r"nw#1
³ 9 for W � g\

"3[19#

which means that\ as expected\ the amplitudes of the harmonic waves strictly decrease in time as
a : 9[

3[3[ Examples

In order to illustrate the results of the present section\ the material termed {{material 0|| in Loret
and Harireche "0880# and Loret et al[ "0886# is considered[ Its volume fraction is nw � 9[91\ its
densities are related by rs:rw � 1[4ns:nw and its elastic and plastic properties vary within admissible
bounds]

9 ¾ l�s:ms ³ 29\ 9 ¾ x ¾ c ¾ 29>[

In Fig[ 1 we represent the regions of divergence and ~utter growth in the parameter plane
"1ms:H\ a# for various values of l�s:ms and for di}erent directions of propagation n[ The directions
of propagation belong to the plane de_ned by the stress!eigenvectors associated to the major and
minor eigenstresses^ the angle made by the normal n and the direction of the stress!eigenvectors
associated with the major eigenstress is denoted by u[ It can be seen that it is not possible to _nd\
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for given normalized plastic modulus and material characteristic length\ an in_mum wavelength
for the unstable solutions[

It can also be seen that the limit as a : 9 of the divergence boundary in the harmonic wave
analysis coincides with the onset of stationary waves in the acceleration wave analysis "point B#
and that the region of ~utter is discontinuous as a : 9] the limit as a : 9 of the ~utter region in the
harmonic wave analysis "line AB# is larger than the ~utter region in the acceleration wave analysis
"line CD# ðnote that in case "d# it even happens that ~utter is excluded in the acceleration wave
analysisŁ[ However\ when a : 9\ the limit values of the harmonic wave!speeds are in agreement
with the results of Loret and Harireche "0880# for the corresponding acceleration wave!speeds] for
1ms:H × 1ms:Hsta the real part of the smallest plastic wave!speed always vanishes as a : 9^ for
1ms:H × 1ms:H~u the imaginary part of the complex solution W may vanish or not as a : 9\
depending on whether ~utter is excluded or not for the corresponding acceleration waves[

In Fig[ 1 we also represent the limit as a :9 of the coe.cient Im"W"a##:a that controls the
growing time behavior of the harmonic waves[ That limit coincides with the coe.cient that controls
the growth or decay of the acceleration waves with real speed of propagation[ It can be seen that\
although the characteristic length introduced by Darcy|s law does not prevent small wavelength
unstable modes\ the exponentially growing time behavior of the unstable modes is unboundedly
magni_ed for vanishing small wavelengths only when values of 1ms:H are used such that non!real
speeds of propagation exist for the corresponding acceleration waves[ Consequently\ the existence
of non!real speeds of propa`ation for the acceleration waves corresponds to a "linearly# ill!posed
problem[

In Fig[ 2 we represent\ for di}erent values of l�s:ms and Lode angles\ the limit values as a : 9 of
the normalized plastic modulus H~u:1ms at the onset of ~utter for the harmonic waves together
with the values of the normalized plastic modulus at the onset of ~utter for the acceleration waves[
It can be seen that the viscous e}ects may anticipate the occurrence of ~utter and\ in addition\
they make ~utter possible even when ce

s ³ ce
L�\ a condition of pivotal in~uence to exclude ~utter

for the acceleration waves[

4[ Conclusions

The present analysis and results have features both similar to and distinct from what is obtained
with an analysis in terms of acceleration waves[

Indeed\ as might be expected\ the speeds of propagation of the acceleration waves obtained in
Loret and Harireche "0880# are equal to the limit of the wave!speeds provided by the harmonic
analysis for in_nitely small wavelengths or for in_nitely small viscous damping associated to
Darcy|s law[ In addition\ the coe.cient that controls the growing time behavior of the harmonic
waves is equal\ in the limit of an in_nitely small wavelength\ to the decay coe.cient of the
acceleration waves studied in Loret et al[ "0886# in the cases where the latter have real speeds of
propa`ation[ Obviously\ in both analyses\ the viscous damping e}ects due to Darcy|s law play no
role on the determination of the onset of stationary waves[

However\ in the harmonic wave analysis for the non!associative case\ the viscous damping e}ects
due to Darcy|s law may anticipate the occurrence of ~utter relatively to the acceleration wave
analysis "the no!damping case# and\ in addition\ they make ~utter possible in situations where it
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was excluded in the acceleration wave analysis "the no!damping case#[ Similarly to what may
happen in _nite dimensional circulatory systems "Ziegler\ 0857^ Huseyin\ 0867#\ the presence of
viscous damping has a destabilizing e}ect on the behavior of the continuous medium[ These facts
are not contradictory with those obtained by Loret et al[ "0886# for acceleration waves\ provided
the speeds of propa`ation of these are real\ because the presence of those viscous damping e}ects
do play a role in the analysis of the growth or decay of the acceleration waves] in the regions of
the parameter space where the amplitudes of the acceleration waves are found to grow or decay\
the corresponding harmonic waves are also found to grow or decay at the same rate when their
wavelengths are decreased to zero[

Inside the re`ions where there are some speeds of propa`ation of acceleration waves that are not
real\ it is found that the coe.cient that controls the time growth or decay of the corresponding
harmonic waves becomes unbounded in the limit of in_nitely small wavelengths] the problem
becomes "linearly# ill!posed in the sense of the de_nitions proposed by Schae}er "0889#\ Benallal
"0881# and Benallal et al[ "0882#[ In contrast with this behavior\ the coe.cient that was used to
characterize the growth or decay of the acceleration waves when their speeds were real can still be
de_ned inside the regions of ill!posedness\ where it continues to be bounded[ However inside those
regions of ill!posedness that coe.cient cannot have the same physical meaning because those
acceleration waves actually do not exist as such] they do not propagate through the medium with
a real speed[ This resolves the apparent contradiction between the results of Loret et al[ "0886#
and the interpretation of Rice "0865# in what concerns growth or decay of waves in the interior of
the ~utter region[ The relevance "if any# of the coe.cient Re"X# and of the equality "3[08# inside
the re`ion of ill!posedness is presently unknown to the authors[

In view of the discussion above and restricting ourselves to the linearized problems studied here\
in Loret and Harireche "0880# and in Loret et al[ "0886#\ a clear distinction should be made
between "linear# ill!posedness and "linear# instability "see also Schae}er\ 0889#[

Linear instability is characterized by]

*existence of acceleration waves with a real speed of propagation and with an amplitude that
grows exponentially in time^

*existence of harmonic waves growing exponentially in time at a rate which\ in the limit as the
wavelengths are decreased to zero\ equals the rate of growth of the corresponding acceleration
waves[

Regions AC and DB in Fig[ 1"b# are representative of this situation[
Linear ill!posedness is characterized by]

*existence of non!real wave!speeds for the acceleration wave analysis^
*existence of harmonic wave solutions with an exponential growth in time that is unboundedly

magni_ed as the wavelengths are decreased to zero[

4**************************************************
Fig[ 2[ Porous {{material 0|| with incompressible constituents and non!associative plasticity[ *] Limit values as a : 9 of
the normalized plastic modulus H~u:"1ms# at the onset of ~utter for di}erent values of l�s:ms and of the Lode angle L[ Ð
Ð Ð ] Corresponding values obtained by Loret and Harireche "0880# in the acceleration wave analysis[ "a# c � 29>\
x � 9> ^ "b# c � 29>\ x � 1[4>[
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Regions CD and B to � in Fig[ 1"b# are representative of this situation[
For an interpretation of ~utter ill!posedness as the absence of solution for some kinds of initial

conditions see Bigoni and Willis "0883#[
The non!coincidence of the regions of instability and ill!posedness in the linearized problems

discussed here results from the characteristic length introduced by the viscous term arising from
Darcy|s law[

Appendix[ The coef_cients of the characteristic equation "2[8#

The real coe.cients of the characteristic eqn "2[8# can be split into elastic and plastic contri!
butions\ u�ie and u�ip:"H:1 ms#\ respectively]

u�i � u�ie¦u�ip:"H:1ms#\ for i � 9 to 4\

where

u�9e � −0

u�0e � a $0¦
0−f

r"nw#1%
u�1e � −$a1 0−f

r"nw#1
¦0¦g%

u�2e � a $f¦
0−f

r"nw#1
¦g%

u�3e � −$a1 f
0−f

r"nw#1
¦g%

u�4e � afg

and

u�9p � 9

u�0p � 9

u�1p �
0

r"ce
s#1

"ry−x#

u�2p � −
a

r"ce
s#1 $ry 0f¦

0−f

r"nw#11−x%
u�3p �

0

r"ce
s#1 $a1f

0−f

r"nw#1
ry¦gry−x%
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u�4p � −
af

r"ce
s#1

"gry−x#[
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